Training für Porsche KI

Veröffentlicht am 23.11.2021

Bei einem Wechsel der Umgebung oder der Sensorik müssen neuronale Netze in Fahrzeugen heute immer wieder von Grund auf neu trainiert werden. Das Forschungsprojekt „KI Delta Learning“ will dieses Problem lösen und so den Aufwand erheblich reduzieren.

Stoppschilder sehen in vielen Ländern ähnlich aus – rot, achteckig, mit dem Wort „STOP“ in der Mitte. Allerdings gibt es Ausnahmen: In Japan sind die Schilder dreieckig, in China wird das Wort „STOP“ durch ein Schriftzeichen ersetzt, in Algerien durch eine gehobene Hand. Ortsfremde Fahrer haben mit diesen kleinen Unterschieden kein Problem. Spätestens nach der ersten Kreuzung wissen sie, wie das lokale Stoppschild aussieht. Die Künstliche Intelligenz (KI) in einem autonomen Fahrzeug benötigt hingegen ein komplett neues Training, um den kleinen Unterschied verarbeiten zu können.

Diese immer neuen Lektionen benötigen viel Zeit, verursachen hohe Kosten und bremsen so das autonome Fahren insgesamt aus. Deshalb setzt die Automobilindustrie jetzt zum gemeinsamen Schritt nach vorne an: Im Projekt „KI Delta Learning“ sollen Wege gefunden werden, autonomen Fahrzeugen selektiv etwas Neues beizubringen. Um beim Beispiel zu bleiben: Man will dem Autopiloten in Zukunft nur noch sagen müssen:

„Alles bleibt gleich, bis auf das Stoppschild.“

Kooperation von großen Partnern

Wie bedeutend diese Aufgabe ist, zeigt schon die Teilnehmerliste des Großprojektes, das vom Bundeswirtschaftsministerium gefördert wird: Partner des Projektes sind neben Porsche Engineering auch BMW, CARIAD und Mercedes-Benz sowie Großzulieferer wie Bosch und neun Hochschulen, darunter die TU München und die Universität Stuttgart.

„Es geht darum, den Aufwand zu reduzieren, um von einer Fahrsituation auf eine andere schließen zu können – ohne sie extra zu trainieren“, erklärt Dr. Joachim Schaper, Leiter KI und Big Data bei Porsche Engineering. „Die Kooperation ist nötig, weil derzeit kein Anbieter allein diese Herausforderung bewältigen kann.“

Das Projekt ist Teil der „KI Familie“, einer Leitinitiative des Verbandes der Automobilindustrie, mit der das vernetzte und autonome Fahren vorangebracht werden soll. Rund 100 Personen bei insgesamt 18 Partnern forschen seit Januar 2020 an „KI Delta Learning“. Es finden Workshops statt, bei denen sich die Experten darüber austauschen, welche Ansätze erfolgversprechend sind – und welche sich als Sackgasse erwiesen haben.

„Wir hoffen, am Ende einen Katalog von Methoden liefern zu können, mit denen sich der Wissenstransfer in der Künstlichen Intelligenz ermöglichen lässt“, sagt Mohsen Sefati, Experte für autonomes Fahren bei Mercedes-Benz und Leiter des Projektes.

Tatsächlich verbirgt sich hinter dem Stoppschild-Beispiel eine grundsätzliche Schwäche aller neuronalen Netze, die in autonomen Fahrzeugen das Verkehrsgeschehen interpretieren. Sie ähneln vom Aufbau her dem menschlichen Hirn, unterscheiden sich jedoch in einigen entscheidenden Punkten: So können sich neuronale Netze ihre Fähigkeiten nur auf einmal aneignen, typischerweise in einer einzigen großen Trainings-Session.

Großer Aufwand durch Domänenwechsel

Selbst triviale Veränderungen können in der Entwicklung von Autopiloten großen Aufwand verursachen. Ein Beispiel: In vielen autonomen Testfahrzeugen wurden bisher Kameras mit einer Auflösung von zwei Megapixeln eingebaut. Werden sie jetzt durch bessere Modelle mit acht Megapixeln ersetzt, ändert sich im Prinzip kaum etwas. Ein Baum sieht noch immer wie ein Baum aus, nur dass er durch mehr Pixel repräsentiert wird. Die KI benötigt trotzdem wieder Millionen von Schnappschüssen aus dem Verkehr, um die Objekte in der höheren Auflösung zu erkennen. Das Gleiche gilt, wenn ein Kamera- oder Radarsensor am Fahrzeug nur leicht anders positioniert wird. Danach ist ebenfalls ein komplettes Neutraining angesagt.

„Es geht darum, den Aufwand zu reduzieren, um von einer Fahrsituation auf eine andere schließen zu können – ohne sie extra zu trainieren“, so Dr. Joachim Schaper, Leiter KI und Big Data bei Porsche Engineering

Fachleute nennen so etwas einen Domänenwechsel: Statt rechts wird links gefahren, statt strahlendem Sonnenschein tobt ein Schneesturm. Menschlichen Fahrern fällt es in der Regel leicht, sich anzupassen. Sie erkennen intuitiv, was sich ändert, und übertragen ihr Wissen auf die veränderte Situation. Neuronale Netze können das noch nicht. Ein System, das zum Beispiel mit Schönwetterfahrten trainiert wurde, ist bei Regen verwirrt, weil es seine Umwelt aufgrund der Reflexionen nicht mehr erkennt. Das gilt ebenso für unbekannte Wetterbedingungen, für den Wechsel von Links- zu Rechtsverkehr oder für unterschiedliche Ampelformen. Und tauchen im Verkehr gänzlich neue Objekte wie E-Scooter auf, muss der Autopilot damit zunächst vertraut gemacht werden.

Ziel des Projektes: nur das „Delta“ lernen

In all diesen Fällen ist es bislang nicht möglich, dem Algorithmus nur die Veränderung beizubringen, also das, was in der Wissenschaft das „Delta“ genannt wird. Um sich in der neuen Domäne zurechtzufinden, braucht er wieder einen kompletten Datensatz, in dem die Modifikation vorkommt. Es sei, als müsste ein Schüler bei jeder neuen Vokabel das komplette Wörterbuch durcharbeiten. Quelle: Porsche

Rate this post

Teile diesen Beitrag

Teile diesen Beitrag

scroll to top